14 research outputs found

    Psychoneuroimmunology and Genetics

    Get PDF
    Psychoneuroimmunology is a study that investigates the interaction between human emotions and the immune system, which is mediated by the endocrine and nervous systems. The nervous and immune systems maintain extensive communication, including communication to lymphoid organs from deep-rooted sympathetic and parasympathetic nerves. Genetic factors are responsible for individual variation in emotional reactivity, and neuroendocrine stress responses were shown by earlier studies in humans. Several gene-environment studies have shown that long-term effects of stress are being moderated by genetic variations in the hypothalamic-pituitary-adrenal (HPA) axis. There is a large interindividual variability of HPA axis stress reactivity on variants of the glucocorticoid (GR) or mineralocorticoid receptor genes, and it documents a sex-specific association between different GR gene polymorphisms and salivary cortisol responses to acute psychosocial stress. In conclusion, many kinds of mind-body behavioral interventions are effective in improving mood, quality of life, reducing stress, and anxiety, thereby altering neuroendocrine and immune functions, and ultimately altering the genetic aberrations. However, the question remains as to whether these latter effects are sufficiently large or last long enough to contribute to health benefits, or if they are even relevant to the development of a disease

    Protein Interactions on Telomeric Retrotransposons in Drosophila

    Get PDF
    Telomere length in Drosophila is maintained by targeted transposition of three non-LTR retrotransposons: HeT-A, TART and TAHRE (HTT), but understanding the regulation of this process is hindered by our poor knowledge of HTT associated proteins. We have identified new protein components of the HTT array: Chromator (Chro), the TRF2/DREF complex and the sumoylation machinery. Chro was localized on telomeric HTT arrays by immunostaining, where it may interact with Prod directly, as indicated by yeast two-hybrid interaction, co-IP, and colocalization on polytene chromosomes. The TRF2/DREF complex may promote the open structure of HTT chromatin. The protein interactions controlling HTT chromatin structure and telomere length may be modulated by sumoylation

    Identification of the Telomere elongation Mutation in Drosophila

    No full text
    Telomeres in Drosophila melanogaster, which have inspired a large part of Sergio Pimpinelli work, are similar to those of other eukaryotes in terms of their function. Yet, their length maintenance relies on the transposition of the specialized retrotransposons Het-A, TART, and TAHRE, rather than on the activity of the enzyme telomerase as it occurs in most other eukaryotic organisms. The length of the telomeres in Drosophila thus depends on the number of copies of these transposable elements. Our previous work has led to the isolation of a dominant mutation, Tel1, that caused a several-fold elongation of telomeres. In this study, we molecularly identified the Tel1 mutation by a combination of transposon-induced, site-specific recombination and next-generation sequencing. Recombination located Tel1 to a 15 kb region in 92A. Comparison of the DNA sequence in this region with the Drosophila Genetic Reference Panel of wild-type genomic sequences delimited Tel1 to a 3 bp deletion inside intron 8 of Ino80. Furthermore, CRISPR/Cas9-induced deletions surrounding the same region exhibited the Tel1 telomere phenotype, confirming a strict requirement of this intron 8 gene sequence for a proper regulation of Drosophila telomere length

    Novel noncoding RNA from human Y distal heterochromatic block (Yq12) generates testis-specific chimeric CDC2L2

    No full text
    The human Y chromosome, because it is enriched in repetitive DNA, has been very intractable to genetic and molecular analyses. There is no previous evidence for developmental stage- and testis-specific transcription from the male-specific region of the Y (MSY). Here, we present evidence for the first time for a developmental stage- and testis-specific transcription from MSY distal heterochromatic block. We isolated two novel RNAs, which localize to Yq12 in multiple copies, show testis-specific expression, and lack active X-homologs. Experimental evidence shows that one of the above Yq12 noncoding RNAs (ncRNAs) trans-splices with CDC2L2 mRNA from chromosome 1p36.3 locus to generate a testis-specific chimeric β sv13 isoform. This 67-nt 5′UTR provided by the Yq12 transcript contains within it a Y box protein-binding CCAAT motif, indicating translational regulation of the β sv13 isoform in testis. This is also the first report of trans-splicing between a Y chromosomal and an autosomal transcript

    Y chromosomal noncoding RNAs regulate autosomal gene expression via piRNAs in mouse testis.

    No full text
    Abstract Background Deciphering the functions of Y chromosome in mammals has been slow owing to the presence of repeats. Some of these repeats transcribe coding RNAs, the roles of which have been studied. Functions of the noncoding transcripts from Y chromosomal repeats however, remain unclear. While a majority of the genes expressed during spermatogenesis are autosomal, mice with different deletions of the long arm of the Y chromosome (Yq) were previously also shown to be characterized by subfertility, sterility and sperm abnormalities, suggesting the presence of effectors of spermatogenesis at this location. Here we report a set of novel noncoding RNAs from mouse Yq and explore their connection to some of the autosomal genes expressed in testis. Results We describe a set of novel mouse male-specific Y long arm (MSYq)-derived long noncoding (lnc) transcripts, named Pirmy and Pirmy-like RNAs. Pirmy shows a large number of splice variants in testis. We also identified Pirmy-like RNAs present in multiple copies at different loci on mouse Y chromosome. Further, we identified eight differentially expressed autosome-encoded sperm proteins in a mutant mouse strain, XYRIIIqdel (2/3 Yq-deleted). Pirmy and Pirmy-like RNAs have homology to 5′/3′UTRs of these deregulated autosomal genes. Several lines of experiments show that these short homologous stretches correspond to piRNAs. Thus, Pirmy and Pirmy-like RNAs act as templates for several piRNAs. In vitro functional assays reveal putative roles for these piRNAs in regulating autosomal genes. Conclusions Our study elucidates a set of autosomal genes that are potentially regulated by MSYq-derived piRNAs in mouse testis. Sperm phenotypes from the Yq-deleted mice seem to be similar to that reported in inter-specific male-sterile hybrids. Taken together, this study provides novel insights into possible role of MSYq-derived ncRNAs in male sterility and speciation
    corecore